Roadmap to Regen agriculture

 Presentation Estonian Organic Farming Platform 29.11.2022

 Jussi Knaapi

<u>It's all about food!</u>
 Local
 Seasonal
 Regen
 Nutritious
 Fossil free

• My background

- "Normal" schooling
- Home farm used to have pigs
- Then arable, sucarbeet, potatoes, cereals
- Noted already on early days, how vunerable our soil is, shallow topsoil (25 cm) easily showed up gray colour subsoil
- On my "ag-chem" years it was easy to bush on yields, because our soils have very good AWC (available water capacity)
- However, gradually you tend to notice how narrow margins are, when pushing top yields with chemistry
- To start a new journey, you need to have some impulse from outside, I got mine about 10 years ago, when first european contacts to regen world game up
- My teachers (to name a few) have been in some order Neil Fuller, Jan Feersma, Elaine Ingham, Jill Clapperton, Rick Bieber, Bud Davis, Don Reikowsky, Christine Jones, Will Brinton, Fredrik Thomas and now resently the JillClapperton's peer to peer group.
- Typically there are very few finnish researchers on area..... Well luckily some domestics also exist!

• My estonian background

- Early 1990's there was a "New farmers project", where finnish advising people were involved
- In Tartu was a co-organisation "Leadership school" = "Maatalouden Johtamisen korkeakoulu"
- Idea was to form a co-operation group of four individual farms
- Big mistakes happend there, 1st the farmers were politically chosen 2nd they didn't get along too well, 3rd – we tried to copy a finnish model to this group, 4th we didn't understand, that times are changing and the "normal" farms are losing viability anyway 5th regen ag didn't yet excist, 6th economical turbulence was taking over us all in 90's
- Later I got involved to real estonian agriculture a group of finns had started a project "AS Vahenurme", which later on made big headlines in estonien press got to the end with lots of headache and we ended losing lots of money among other things...
- And finally, a conclusion was that a finnish farming & advising model didn't fit to Estonia and this project ceased away
- Conclusion was: Each country must rely on their own vision and will, but mutual co-operation is still very important

• How to measure environmental impact right

- Yes, we are concerned about climate, but also waterways (Baltic Sea) and ecosystems
- A big issue (in Finland) is that we have 2 kind of research: 1. Political 2. Real scientific
- "Politicals" rely on "LULUCF"-model, which means that all turf soils must away and to be classified as wetland or forests – mainly wetlands – mostly this is simply put foolish but offer an easy route to (political) Net Zero
- Nobody hardly tries to tell there are better managements, which can provide win-win-win
- In other words lessen emissions, keep production going and keep countryside alive and also ecologically alive
- The big dilemma is that public thinks veganism is the answer and ruminants the problem
- Hopefully Regen ag can give answers to this
- In Finland we do have two issues, which are kind of disturbing this regen process
- They are 1. Ca-growers (ECAF=Notillers) and 2. Eco-growers (the official organisation)!
- Luckly there are people in both of these organisations how do understand that there really is no problem

Soils are different!

- We need differentiate soils down to whole profile
- Huge variation in AWC, chemistry, Redox, microbial status
- Base problem is nearly always just one man made compaction

Horizons	depht, cm	SOUTHER STATION (FEEL FOR STATION (STERRA
Α	0 – 20	
В	20 – 50	
С	50 - 90	
Α	0 – 20	
В	20 – 50	
C	50 - 90	

- There still are borealic climate areas which have not lost their SOM!
- Asid soil type, huge AWC, moderate temperatures
 These factors offer good road map to regen ag
 - Altough there is a risks also >
 - By wrong (present style) management, these soils are high risk areas for negative emissions (CO2) On the other hand, they can provide huge green mass production potential and their waterway leaching is well in control

Field vs. forest!

- Examble: Kari Farm in middle Finland
- These two samples are from side to side
- Field (left) was reclamed 1970's and has been on Eco since then
- Sample on right is forest
- Grass based rotation
- Picture is from 2019

Fotosyntesis is the driver of SOM build up

- Ruminants and resently rotational grazing has build up 20 30 cm topspoil
- Resently lusern has been quite dominantly in grass mixes

- Variation on carbon sequestration is huge and depends totally on management
- Produced dry matter (foodstuff) should always be counted as agriculture's CO2-binding and consumers CO2-release
- Same principle must apply to all GHG emissions

Four most important element of growht are free!

H20

Fe

N2

 1°

Fifth and maybe the most important factor are <u>microbies!</u> Sixth big factor are naturally occuring nutrients.

CO2

Mg

W/m2

Ca

Situation in many European countries is demanding!

• Situation in borealic climate is totally different, soils tend to accumulate carbon, many factors have effect here

Examples of carbon negative growht (CO2).

Sucarbeets. 300 ppm

Oats 320 ppm

Grass silage 2nd cut 310 ppm

Turf soil, soil flux 420 ppm

Turf soil , vegetation included, 350 ppm

Turf soil, ploughed, soil flux 660 ppm

Turf soil, no inversion, Soli flux 370 ppm

Mittaukset 2019, Ari Koutonen FICA ja Jussi Knaapi

Problem

• Anaerobic, tight soil

- Reducting environment
- Measured as <u>Redox</u> value
- Gaseous emissions
 - Losses of nutrition
 - Denitrification N2 ja N2O
- Soil biology suffers
- Patogenic microbies dominate
- Weak growht
- Poor root development
- Limited gas & water movement
- Increasing negative spiral
- Negativ environmental impact

<u>Close up</u>

- <u>Compacted zones in root layer</u>
- 0->>100 cm
- Measured with penetrometer.. or
- volymeweight
- Spade test
- Visual assesment

<u>Close up</u>

- <u>Compacted zones in root layer</u>
- 0->>100 cm
- Measured with penetrometer.. or
- volymeweight
- Spade test
- Visual assesment

Typical compaction layer created by disc cultivator

- <u>Compacted zones in root layer</u>
- 0->>100 cm
- Measured with penetrometer.. or
- Volyme weight
- Spade test
- Visual assesment

Close up

• Compacted zones created in 17 years

Notill	Notill with vertical opener disks	Notill with front disc cultivator	Autumn plough S-tine seedbed prep.	Autumn mintill (chisel) +S-tine	Autumn mintill (disk) +S-tine	Spring mintill (disk) +S-tine
Aitosuorakylvö	Suorak. vertik.kiekko	Suorak, esimuokkaus	Kyntö + kylvöäestys	Syyskultiv.+ kylvöäestys	Syyslautas.+ kylvöäestys	Kevätlautas.+ kylvöäestys
2000	· Nation	TORES!	and there	"THERE	THE	- Parties.
	ALL CONTRACTOR	State.	and the second	The	alter an	
	ALL ST.	and their	100 Car	- ALT - AL	- ADDRENT -	- State Barrier
SOM-% 0-5 / 5-15 cm						
Multavuus-%	Multavuus-%	Multavuus-%	Multavuus-%	Multavuus-%	Multavuus-%	Multavuus-%
15,8/9,7	13,5 / 8,8	13,4/9,7	8,4 / 8,4	8,8 / 8,9	10,7 / 9,1	10,4 / 9,7

Microbiometer results

Affects also the microbial balance

Aitosuorakylvö	Suorak. vertik.kiekko	Suorak. esimuokkaus	Kyntö + kylvöäestys	Syyskultiv.+ kylvöäestys	Syyslautas.+ kylvöäestys	Kevätlautas.+ kylvöäestys
100 385 ug C / g ribroben F 8 = 0.7.1 F 42 % B 58 %	Scil 128 urg C / 0 microbes FIB = 0.1.1 F 11 % B 89 %	Tool 156 ug C / g microbes F18 = 0.2 : 1 F13 % F13 % B 87 % B 87 %	5xi 44 ug C/g recruites F8 = 0.0 : 1 F3 % B 97 %	301 113 ug C / g F8 = 0.1.1 F8 = 0.1.1 F8 5 B 91 %	508 89 ug C / g microbos F / % E 93 %	501 130 Ug C / g microbos F 11 % 8 89 %
Low Good Excellent Briew Mit Above	MDC Black Excellent Beine Mit Anne	Low Cool Ecollett Below Mil Above	Low Good Excellent Stow Mid Above	ABC Fill Addie	Low Cool Economic Below Mil Above	Lew Doord Econtract Driver Mill Alone
Sample subrakylvő 2.0-5 🖌	Sample Kexusa G-B cm	Sample Rapid 0-5 cm	Sample Kyntö 0-5 cm.	Sample Syysicultivaint 0-5 cm	Sampin Syydautasmuokkaus 0-5 cm 🖌	Sample Kesttautaanuokkaus 8-6 om 🖌
Set 132 ug C / g mianutas F/B = 0.1:1 F11 % F/B = 0.9:1 8 89 % 8 89 %	Sol 125 up C / g inscrobes F-B = 0.111 F 10 % B 90 %	500) T41 up C / p microbas F 8 = 0.1.1 F 12 % B 88 %	Sel 54 ug C / g microbes F-8 = 0.0 : 1 F-8 = 0.0 : 1 F-8 = 0.0 : 1 B 96 %	Soil 46 ug C / g microtws F/8 = 0.0 11 F/8 = 20,0 11 Align B 98 % 8 98 %	54 49 ug C / g microbes F8 = 0.0.1 F3 % 8 97 %	Set 108 ug C / g microbes FS ≈ 0.1:1 FS ≈ 0.1:1 FS ≈ 0.1:1 B B 1% B B 1%
Low Coop Excellent Below Mid Above	Line Sood Excellent Detail Mill Atorse	Low Good Excellent Deve Mil Above	Low Good Excellent Below Mill Allows	ABC For Fride Above	Low Good Excellent Below Mid Algue	Low Dios Excellent Below Met Above
Sample subisity/kd 2 5-15 cm	Sample Krouve 8-10 cm	Bample Rapid 5-15 cm	Sample Kynik 5-15 cm	Barreile Byyskultinsinii 5-15 cm 🖌	Santajia Syyddautaninuokkausi 5-15 vm	Barnple kenätikulaannutkkaas 5-75 cm 🖌

Microbiometer results

Affects also the microbial balance

Doc Pohjanheimo's research

Minimium tillage

- Worst impact is done by a tool, which is not adjustable and acts like a plane
- Disc type "Min till" equipments

Minimium tillage

- Worst impact is done by a tool, which is not adjustable and acts like a plane
- > disc type "Min till" equipments
- Some tools are 'acceptable'
- Depending how it's used

Minimium tillage

- Worst impact is done by a tool, which is not adjustable and acts like a plane
- > disc type "Min till" equipments
- Some tools are 'acceptable'
- Depending how it's used
- This tool might be better, it's adjustable

Vertical disc

Plough

- Worst impact is done by a tool, which is not adjustable and acts like a plane
- Problematic plough culture
- Total disturbance/inversion
- Plough pan

Tillage is here done in poor conditions, also soil is demanding > heavy, tight, moist clay

Plough

- Challenges on clay- & sloping soils
- Challenges on (oxcidation) mulch-& turf soils

Notill 1.0

- <u>At least party solvs these problems</u>
- Loss of SOM
- Plough pan
- Uncovered soil over winter period
- Microbial balans (bacterial dominance)
- But it is not perfect!

Notill 2.0

- Vertical disc opener loosens tight layers
- Straw cover kept up better

Comparison to inversion technic

Notill 3.0

- New "Regen Ag" management
- Requires open structure
- Must cope seeding to heavy covers
- With or without crimpler roller

"Newest" technic

Notill in sloping soils

- <u>Done right</u> it is the best technic
- Minimal particle erosion
- Low 'soluble' (PO4) run off, if done right
 > management, which has no pan layers!
- Minimal disturning of soil structure

Soil type, special requirements

- On Clay soils, cracking
- On lighter mineral & high organic soils, how to keep SOM constant

Cracking

Both soil types are manageable!

Loss of SOM

Soil type, special requirements

- On Clay soils, cracking
- On lighter mineral & high organic soils, how to keep SOM constant

Managemental choices

- "Those regular one's", tiling, base fertility etc.
- Topography
- Total change of management, Regen Ag
- Continous follow up of the effects of changes
- Non-chemical weed control in Eco growing >
- https://youtu.be/HqtAYEtweiY

<u>Topografi</u>

The way of management

The way of management

+

Soil Microbiology Report **Organism Biomass** Guideline Analysis Low Optimal High % 15-55 Moisture content 25 Active Bacteria µg/g 25.0 30-150 Total Bacteria µg/g 571 300-600 Active Fungi 158.9 30-150 µg/g Total Fungi µg/g 326 300-600 Hyphal Diameter 3.00 >2.5 μm

Organism Ratios						
Analysis	Result	Guideline	Low	Optimal	High	
Active/Total Bacteria	0.04	0.1-0.5				
Active/Total Fungi	0.49	0.1-0.5				
Active Fungi/Active Bacteria	6.35	1.0-2.0				
Total Fungi/Total Bacteria	0.57	1.0 - 2.0				

Protozoa							
Analysis	Units	Result	Guideline	Low	Optimal	High	
Flagellates	No/g	7622	5000-100000			0.00	
Amoebae	No/g	564	5000-100000				
Ciliates	No/g	609	0-100				

			N	ematodes			
Analysis	Units	Result	Guideline	Low	Optimal	High	
Total Nematodes	No/g	14	10-20			an-a	
Nematode types	Fungal fe	eeders: 3%;	Bacterial feeders: 84	%; Predators: 3%;	Plant parasitic: 0%; J	uveniles: 10%	
			Mycorrh	izal Colonisation			
Analysis	Units	Result	Guideline	Low	Optimal	High	
Ectomycorrhizae	%	0	10-50				
Endomycorrhizae	0/	7	10 50				

	Potential Nitrogen in Soil				
Nitrogen (N)	kg/ha	31-63	Potentially cycled for a period of 3-6 months*		

*Please note that this value is related to the microbiological activity and is not a chemical measure of nitrogen.

Photo courtesy Jill Clapperton

Solvita CO2 burst test

Right after managemental task

After few weeks

1. Fostop 2. Kipsi 3. Kipsi+kuitu 4. Kananl.+kuitu 5. Bioruiskute 6. Kontrolli 7. Biohiili

The follow up of management changes

Microbial status – possible to heal!

Pre-result, Samplingdate: 5.8.2015 "5 weeks growht"

> Mycorrhizal treatment at planting

Low N-level, normal P & K Variety, Van Gogh

Control

....

Professori Onni Pohjanheimon kokeita Jokioisissa v. 1961

ipring cereals

Taulukko 7. Osoittaa minkälaisia tuloksia kosteussulun avulla on saavutettu.

Lajike	Ei peitetty	hiekalla	Peitetty	hiekalla isato
	kg/ha	suhdel.	kg/ha	suhdel.
Paavo	5810	100	10350	178
Balder	5390	100	10270	190
Sisu	7140	100	10110	142
Jo 0710	5560	100	10050	181
Svenno	3560	100	7190	202
Norrona	3610	100	7000	194
		5		
	deas		10	

Jokioisten hiekkapeltokoe on osoittanut, että ilman kasteluakin voidaan kevätvilijoista saada satoja, jotka ovat tuntuvasti runsaampia kuin ne, joita olemme tottuneet saamaan. <u>Maan vesivarat riittävät tällainin Olisi loydettava keinöt niiden hyväksikäyttöön.</u> Koe antaa arvokkaita viitteitä kevätmuokkauksen tavoitteista. Tarkeimpänä näistä näyttäisi olevan maan vesivarojen hukkaan haihtumisen estäminen ja maalehtiminen niistä toimenpiteistä, jotka auttavat juuria tunkeutumaan syvemmälle kuin mitä ne tävallisesti voivat kasvaa.

- tasainen, maan pintaosien nopeata kuivumista estävän muokkauskerroksen aikaansaaminen
- kylvo tasaisesti kosteaan kerrokseen, josta juurien kehittyminen voisi esteettömästi jatkua ilman, että koivuus pysähdyttää tai hidastaa juurien kehittymista ja toimintaa
- etta kevatmuokkaus aloitetaan heti kun savi on kuivunut muokkautuvaksi noin 5 — 7 cm:n syvyydeltä
- että kylvo tehdään muokatun kerroksen alara-

Jalle

Nain kehittynyt oraisto tuottaa runsaan sadon. Näyte otettu 6 viikkoa kylvön jalkeen. Näytteenottokehikko on 70 cm korkea. Kuva Jokioisten koekentiltä v. 1960.

Sensorien fuusio --> 1 + 1 on enemmän kuin 2

Perusmittaus

Laajennettu mittaus

Topography

154

рΗ

SOM

Reference sampling based on live-map & "high-low" zones

Θ

640

EC

Agronomic and carbon measurement simultaneously

Referensesampling - SOM-%

Agronomic and carbon measurement simultaneously

Referensesampling - SOM-%

Carbon stock – g/kg at different dephts

1. Notill, KV Loimaa - 14 years Knaapi & Knaapi maaperäskannaus 2019 Luken pitkäaikaistutkimus 1974-2018 2. Plough, KV Loimaa - 14 years n. 140 koepaikkaa (toistaiseksi) 3. Grassley, 11 sites - < 5 year Jokaiselta koepaikalta useita (n 4) referenssinäytettä Rotational grazing, Eco 24 years, 40 without 4. Jokaisesta referenssinäytteestä 12 osanäytettä ag-chemicals, no plough 20 years, 1 site Näytteet 0 – n 90 cm 5. All Knaapi & Knaapi samples 140 sites 6. Coarse sandy soil, mix rotation, 10 sites (sampling only 0-20 cm) Mineral soils Mineral and organic soils Kivennäis- ja g/kg kivennäismaa orgaaniset maalajit 80 100 % diversiteettinurmi 75 Laidunnus, ei kyntöä 70 65 215 tn/ha 188 tn/ha 337 tn/ha 399 tn/ha 44 tn/ha 216 tn/ha 60 55-73 tn/ha 50-Hiilen määrä kivennäismailla Lähde: Luonnonvarakeskus 45 g/kg 39 39 40-0-20 Karkea kivennäismaa, 40 37 35 ei nurmer 35 35 30 30 20-50 25 25 Mallinnettu! 50-90 20-20 0-15 15 15 10 3 5 10 1 2 4 6 5 5 0 1987 1998 2009 2018 Mittaussyvyys 🔜 0 -15 cm Mittaussyvyys 🔜 0 – 20, 🔜 20 – 50, 🔜 50 - 90 cm

Some key factors affecting the efficacy of carbon sequestration

- Balanced C/N relation target to have 24/1 relation, but..... seldom achieved!
- Fungal/bacteria balance
- Control of evaporation effective rain vs 'meterological rain'
- Control of water potential (WP) in soil
- Understanding the difference of volumetric and potential water
- Understanding, how soil life (CO2 breathing) and plant canopy interact feedback & the lenght of effective season important

Challenges in Carbon measurement!

Testing nutritional quality

XRF-gamma ray technic

